

A Plant Disease Classification with Residual Convolutional Neural Network

Katsuhiro Sasagaki

Under the supervision of Dr Hemantha Kodikara Arachchi Contact: Katsuhiro.sasagaki2019@my.ntu.ac.uk

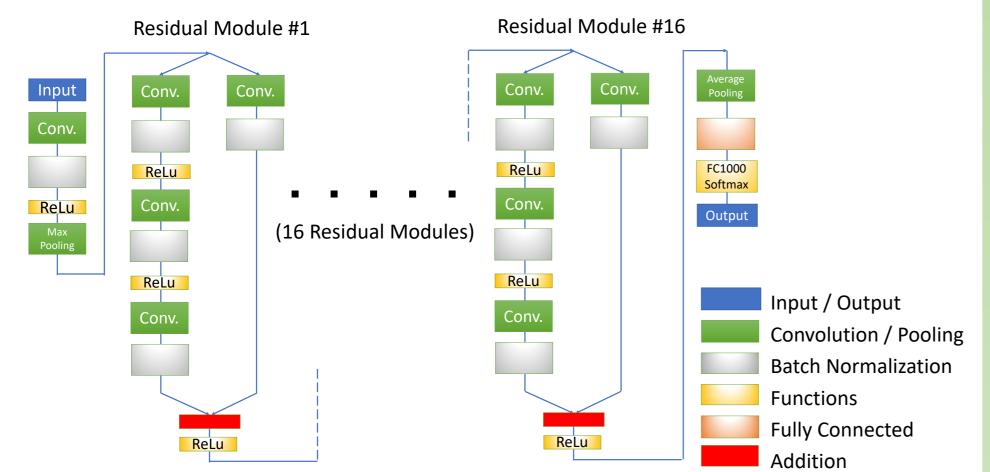
Project Code: 96

Prototype Video

3. Results

1. Introduction

Among many Convolutional Neural Networks, Residual Network (ResNet) has been used as the base model for most models that have achieved high recognition accuracy in recent studies [1]. The aim of the project is to train an image classification model for plant diseases with plant leave images using ResNet to prototype a mobile app. The challenge is to develop a practical classifier that can deliver high classification accuracy in recognition of 26 different diseases on the image dataset. Fig. 1 shows the configuration of ResNet50 [2].



An Overall Accuracy: 99.50% for 26 Disease & 12 Healthy Classes An overall accuracy is 99.5%, and a 100% accuracy is achieved for 22

classes (Table 2).

Disease Class		Accuracy	Disease Class	Accuracy
1	AppleBlackRot	100.00%	20 PepperBellHealthy	100.00%
2	AppleCedarAppleRust	100.00%	21 PotatoEarlyBlight	100.00%
3	AppleHealthy	98.00%	22 PotatoHealthy	100.00%
4	AppleScab	99.50%	23 PotatoLateBlight	99.50%
5	BlueberryHealthy	100.00%	24 RaspberryHealthy	100.00%
6	CherryHealthy	100.00%	25 SoybeanHealthy	100.00%
7	CherryPowderyMildew	99.00%	26 SquashPowderyMildew	100.00%
8	CornCercosporaLeafSpotGrayLeafSpot	98.00%	27 StrawberryHealthy	100.00%
9	CornCommonRust	100.00%	28 StrawberryLeafScorch	99.50%
10	CornHealthy	100.00%	29 TomatoBacterialSpot	99.50%
11	CornNorthernLeafBlight	98.00%	30 TomatoEarlyBlight	99.00%
12	GrapeBlackRot	99.50%	31 TomatoHealthy	99.50%
13	GrapeEscaBlackMeasles	100.00%	32 TomatoLateBlight	99.50%
14	GrapeHealthy	100.00%	33 TomatoLeafMold	99.00%
15	GrapeLeafBlightIsariopsisLeafSpot	100.00%	34 TomatoMosaicVirus	99.50%
16	OrangeHaunglongbingCitrusGreening	100.00%	35 TomatoSeptoriaLeafSpot	100.00%
17	PeachBacterialSpot	100.00%	36 TomatoSpiderMitesTwoSpottedSpiderMit	te 100.00%
18	PeachHealthy	100.00%	37 TomatoTargetSpot	95.50%
19	PepperBellBacterialSpot	100.00%	38 TomatoYellowLeafCurlVirus	98.50%

Fig.1: Concept of ResNet50

2. Method

The PlantVillage dataset is used for training the ResNet50. It includes 26 diseases and 12 healthy classes on 14 crops (Table 1) [3].

Crops	Diseases	Crops	Diseases
	Healthy		Healthy
Applo	Black Rot		Early Blight
Apple	Cedar Apple Rust		Late Blight
	Apple Scab	Raspberry	Healthy
Blueberry	Healthy	Soybean	Healthy
Corry	Healthy	Squash	Powdery Mildew
Cerry	Powdery Mildew	Strawberry	Healthy
	Healthy		Leaf Scorch
Corn	Cercospora Leaf Spot		Healthy
COITI	Common Rust		Bacterial Spot
	Northern Leaf Blight		Early Blight
	Healthy		Late Blight
Grano	Black Rot		Leaf Mold
Grape	Esca Black Measles	TUITIALU	Mosaic Virus
	Leaf Blight Isariopsis Leaf Spot		Septorial Leaf Spot
Peach	Healthy		Spider Mites
FEdUI	Bacterial Spot		Target Spot
Pepper Bell	Healthy		Yellow Leaf Curl Virus
repper dell	Bacterial Spot	Orange	Citrus Greening

Table 1. PlantVillage Dataset Contents

Table 2. Accuracy for 26 Disease Classes and 12 Healthy Classes

The training is performed with following configurations:

- Number of Epochs: 6
- Iterations per Epoch: 3,040

Training

- Learning Rate: 0.0003

Accuracy

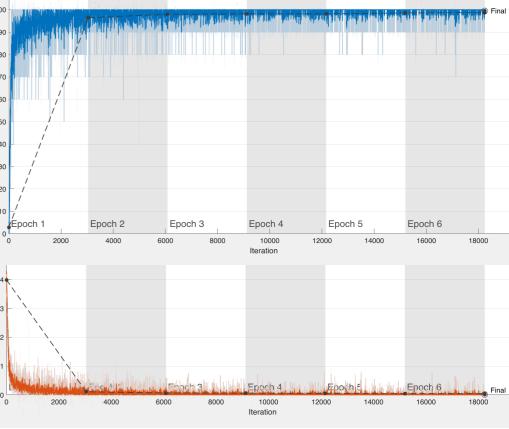


Fig 3. Training Progress with Accuracy and Loss

4. Conclusions & Discussions

The trained model with a 99.5% accuracy has been implemented on iPhone 7 Plus using MATLAB Mobile as Fig 4 shows below.

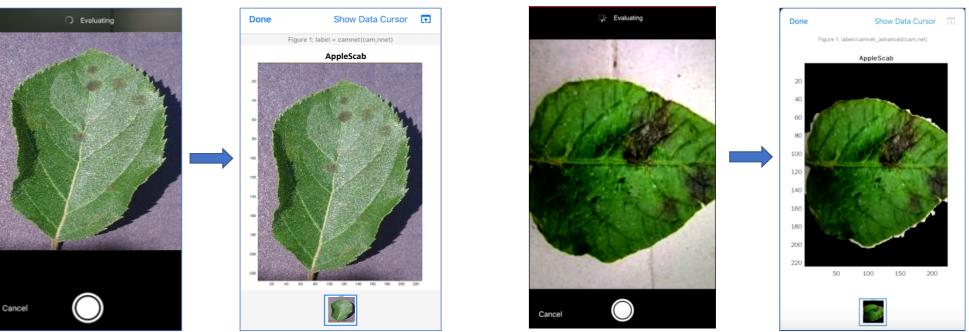


Fig 4. Basic Classifier (Left) and Automatic Leaf Boundary Extraction (Right)

Dataset images for each disease class are bulked up by Image Rotation method (Fig. 2) [3]. 1,000 images for each class are randomly selected, then these are divided into 800 and 200 images for the Training and the Testing, respectively.

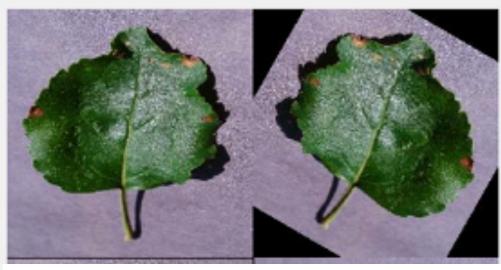


Fig 2. Image Rotation Method

The Reflection, Transition, and Scaling are randomly applied for each image before the training to further augment the dataset. Data augmenting, Training and Testing algorithms are implemented by MATLAB Deep Learning Toolbox [4]. To validate the model accuracy, 100 images per class are randomly selected from the non-augmented dataset that is not used for the Training and Testing.

An extra experiment performed on the unknown dataset with 3 plants including 9 disease classes shows a lower accuracy, 83.7%, indicating that images with different backgrounds or other leaves may adversely affect on the accuracy. The Automatic Leaf Boundary Extraction (Fig 4., Right) might improve this issue.

References

[1] Zhai, J., Shen, W., Singh, I., Wanyama, T. & Gao, Z. 2020, "A Review of the Evolution of Deep Learning Architectures and Comparison of their Performances for Histopathologic Cancer Detection", Procedia Manufacturing, vol. 46, pp. 683-689. [2] He, K., Zhang, X., Ren, S. & Sun, J. 2015, *Deep Residual Learning for Image* Recognition

[3] J, A.P. & GOPAL, G. 2019, 18 Apr-last update, *Data for: Identification of Plant* Leaf Diseases Using a 9-layer Deep Convolutional Neural Network. Available: doi: 10.17632/tywbtsjrjv.1.

[4] MathWorks b, , Train Deep Learning Network to Classify New Images. Available: https://uk.mathworks.com/help/deeplearning/ug/train-deep-learningnetwork-to- classify-new-images.html.