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Abstract 

In this study, the Residual Networks (ResNet) is used to train an image classification model to 

identify plant diseases of plant leaves. The model successfully identifies 38 different crop-diseases 

with 99.5% accuracy. The model is developed and trained using the MATLAB Deep Learning Toolbox. 

A mobile application was implemented on the iPhone 7 Plus incorporating the trained model to turn 

the mobile phone into a plant decease identification device. 

1. Introduction 

According to the Food and Agriculture Organization of the United Nations (FAO), plants cover 80% of 

the human diet and are an essential part of the diet, while 20% to 40% of global food production is 

lost due to plant pests and diseases. (Graaf, 2017) Reduced food production due to plant diseases 

can lead to higher food prices and even famine, in severe cases. Image classification systems trained 

by the machine learning approach have made rapid progress in recent years to reduce food losses 

due to these plant diseases. In order to minimize the food loss caused by pests and diseases, it is 

necessary to quickly identify the type of disease based on the patterns appearing on the leaves of 

the plants and take a prompt action for it, but it is not easy to diagnose them with the naked eye, 

which strongly depends on the experience and knowledge of the individual (Atila et al., 2021). The 

study presented in this paper is to discuss and analyze suitable methods to train the image 

classification model in terms of a recognition accuracy. The objectives are to train a classification 

model for plant diseases with plant leave images and to prototype a mobile app using the trained 

model. The section 2 explains terminologies and key concepts related to datasets, training and 

evaluation methods, and convolutional networks, and critically assesses these methodologies based 

on the related studies. The section 3 analyses the characteristics of the Residual Networks used in 

the project and how they differ from other Convolutional Networks. In Section 4, the dataset pre-

processing, data augmentation methods and training options required for implementation are 

discussed, leading to conclusions with results in the recognition accuracy in Section 5. 

 

2. Backgrounds: Terminologies and Related Studies 

2-1. Dataset and Classification  

Most of the datasets used in recent related research have been from an open access repository 

called PlantVillage. This repository is a copyright-free repository consisting of about 54,000 images, 



supervised and classified by experts into 38 plant-disease pairs (Table 1). The repository is available 

for download and commercial use on Kaggle, TensorFlow, GitHub, Mendeley and many other sites 

(Hughes, 2017). 

 
Table 1. 38 Classified Plant-Disease Pairs on the PlantVillage Dataset 

 
2-2. Data Augmentation 

Data Augmentation is a method of increasing the amount of data by creating multiple variants from 

a limited amount of image data by applying tonal or geometric changes to the sample images - for 

example, changing the brightness or flipping the image left, right, up or down - in order to avoid the 

overtraining, where the training model responds to features that are essentially irrelevant (Shorten 

and Khoshgoftaar, 2019).  For example, the PlantVillage repository images described above are all 

just a single target leaf on a plain background, and if these images are used as input data as is, 

overtraining on the training data will occur. When this occurs, there is a clear performance 

difference between the training data, on which the model has been trained, and the test data, on 

which the model has not yet been trained, resulting in a model with poor generalization ability. 

Although the uniformity of the input data is not the only cause of the overfitting, bulking up the 

input data by making various changes to the original image data is an important method to prevent 

the overfitting. 

 
Figure 1. Overfitting (Left) and Desired Convergence (Right) (Shorten and Khoshgoftaar, 2019) 

 

1 AppleBlackRot 20 PepperBellHealthy
2 AppleCedarAppleRust 21 PotatoEarlyBlight
3 AppleHealthy 22 PotatoHealthy
4 AppleScab 23 PotatoLateBlight
5 BlueberryHealthy 24 RaspberryHealthy
6 CherryHealthy 25 SoybeanHealthy
7 CherryPowderyMildew 26 SquashPowderyMildew
8 CornCercosporaLeafSpotGrayLeafSpot 27 StrawberryHealthy
9 CornCommonRust 28 StrawberryLeafScorch
10 CornHealthy 29 TomatoBacterialSpot
11 CornNorthernLeafBlight 30 TomatoEarlyBlight
12 GrapeBlackRot 31 TomatoHealthy
13 GrapeEscaBlackMeasles 32 TomatoLateBlight
14 GrapeHealthy 33 TomatoLeafMold
15 GrapeLeafBlightIsariopsisLeafSpot 34 TomatoMosaicVirus
16 OrangeHaunglongbingCitrusGreening 35 TomatoSeptoriaLeafSpot
17 PeachBacterialSpot 36 TomatoSpiderMitesTwoSpottedSpiderMite
18 PeachHealthy 37 TomatoTargetSpot
19 PepperBellBacterialSpot 38 TomatoYellowLeafCurlVirus



The research by Mohanty et al. applies two data augmentation methods to image datasets: 

greyscale and segmentation. The segmentation method removes the background from the image 

and standardizes the color, brightness and saturation of the leaves to prevent color casts and create 

a dataset free from potential bias (Mohanty et al., 2016). 

 
 
Figure 2. Data Augmentation Methods: Grayscale (b) and (e), and Segmentation (c) and (f), from original (a) 

and (d), (Mohanty et al., 2016) 
 
A study by A. KP and J. Anitha applies only the most basic data enhancements such as rotation, shift 

and zoom (A and Anitha, 2021), while Zhao et al. add salt and pepper noise, Gaussian noise and 

images with altered luminance, saturation and contrast to the basic data augmentation, thereby 

increasing the diversity of their dataset (Zhao et al., 2021). Cropping & Patching (Fig. 3.) and Random 

Erasing (Fig. 4.), introduced in the paper by Shorten and Khoshgoftaar are not often used, but these 

methods can be used to prevent overtraining as well. Cropping & Patching is a method of combining 

images selected from several completely unrelated genres with a relevant image. Random Erasing is 

a method of randomly erasing parts of the target image. 

 

 

 

 

 

 

 

 

Figure 3. Cropping & Patching <left> Random Erasing <right> (Shorten and Khoshgoftaar, 2019) 



2-3. Training Methods 

2-3-1. Training-Testing Ratio on the Dataset Images 

The training of an image recognition model using a neural network is classified into two stages: 

training and testing. A part of the dataset is loaded into the neural network for training, while the 

remaining part is used as unknown data to evaluate the trained model. If there is a large discrepancy 

in recognition accuracy or error rates between the two datasets, one for training and one for testing, 

the model is judged to be inaccurate. Training is also repeated until these rates converge. 

It is known that optimizing this training-testing data ratio can prevent overfitting and improve 

recognition accuracy, but a 80-20 training-testing ratio is commonly used. In the research of 

Mohanty et al., which aims to recognize all the 38 types classified in the PlantVillage dataset, several 

dataset partitioning ratios were tried, and the recognition accuracy was compared for each 

combination of CNNs used as shown below. As a result, the combination of GoogleNet as CNN, 20-

80 training-testing Ratio and Transfer Learning achieved the highest recognition accuracy of 99.34% 

(Mohanty et al., 2016). 

 

2-3-2. Pre-Trained Model or Model Trained from Scratch 

There are various methods used to build the training model, but there are mainly two types of 

methods: one is to train the model from scratch, and the other is to train the model based on a 

model trained on a relevant data set, which is called the Transfer Learning. Training from scratch 

generally requires a large amount of training data and is expensive in terms of time and 

computational resources, but it is more customizable and is used when there are no models trained 

on similar data sets. In the study of Venkataramanan and Agarwal, who built a training model for 

leaf disease recognition from scratch using VGGNet16, the accuracy of the training and testing sets 

was only about 50.26 % at 20 epochs. Therefore, the model was switched to transfer learning to 

achieve higher accuracy. As a result, an accuracy of 78% was achieved, indicating that a model 

trained from scratch is not practical in terms of recognition accuracy. In this experiment, the 

combination of 80:20 training-testing ratio and transfer learning also showed the highest recognition 

accuracy (Venkataramanan and Agarwal, 2019). Also, in the work of Oztel, Yolcu and Oz, who 

experimented with two CNNs, VGG16 and AlexNet, comparing models built from scratch and 

transfer learning models, the transfer learning model shows an excellent result in terms of training 

speed and recognition accuracy (Oztel, Yolcu and Oz, 2019). 

 

 



2-4. Evaluation Methods & Metrics 

The performance of the image recognition model is evaluated by Accuracy (mean Average Precision: 

mAP) and F1 score. Although if the amount of data set for each recognition category is distributed in 

a balanced way, it would be evaluated with Accuracy, the F1 score may be a more accurate 

assessment when the number of images in the dataset for each category varies greatly, as in the 

case of PlantVillage, overfitting occurs in the category with the larger number of images (Shi, C., 

2020). These two measures are calculated from the values of Recall and Precision, which are 

calculated by the following formula: 

 - Recall (%)  = (True Positive / True Positive + False Negative) * 100 

- Precision (%)  = (True Positive / True Positive + False Positive) * 100 

 

True Positive (TP) is the number of correctly recognized images in the target category. For example, 

these images would be classified as TP if the TomatoBacterialSpot images are recognized as 

TomatoBacterialSpot. False Negative (FN) is the number of images the target category is recognized 

as a different category. For example, if an input image of TomatoBacterialSpot is recognized as 

TomatoLeafMold, this would be counted as FN. False Positive (FP) is the sum of the number of 

wrongly recognized images in categories other than the target category. For example, the FP is the 

total number of images that are recognized as TomatoBacterialSpot in the 9 Tomato categories 

other than TomatoBacterialSpot in the PlantVillage dataset. In addition, the total number of 

correctly recognized images in the categories other than TomatoBacterialSpot category is counted as 

True Negative (TN) for the TomatoBacterialSpot category (Atila, Ü, et al., 2021). 

 
Fig. 6, Chart for TP, FN, FP, and TN for TomatoBacterialSpot Class 

 

 

 

 



- Accuracy (mAP) 

Using the above indicators, Accuracy can be calculated using the following formula: 

Accuracy (%) = [ (TN + TP) / (TN + FP + TP + FN) ] * 100  

(N B, H., 2019) 

 

- F1 Score 

F1 Score, on the other hand, can be calculated by Precision and Recall as follows: 

F1 Score (%) = 2 * [ (Precision * Recall) / (Precision + Recall) ] * 100  

(N B, H., 2019) 

 

2-5. State-Of-The-Art Neural Network 

Convolutional Neural Networks (CNNs) are one of the main artificial neural network algorithms used 

in recent machine learning for image recognition, inspired by the neuronal connectivity patterns in 

the visual cortex of animals that process visual information. CNNs are particularly popular in the 

fields of image and video recognition and object classification because they require minimal 

preprocessing of the input data and can efficiently extract features by learning the functions of 

filters traditionally designed by humans. There are various architectures of CNNs, but they are 

mainly composed of the following four layers (Indolia et al., 2018). 

1) Convolution Layer 

2) Pooling Layer 

3) Flatten Layer 

4) Fully Connected Layer 

 

2-5-1. Convolution Layer 

The convolution layer extracts high-level features, such as edges, from data that contains a lot of 

information, just as humans see things. To do this, it performs a convolution operation on the input 

data using a filter called a kernel filter, and reconstructs the features extracted from the original 

data within the size of the kernel filter (Indolia et al., 2018). The following is an example of feature 

extraction performed by applying a 3 x 3 x 1 kernel filter to a 5 x 5 x 1 input image. 

 

 

 

 

 



 
Figure 4. A Key Concept of the Convolutional Operations 

 

The convolution layer of CNN can thus obtain an output with a smaller spatial size without losing the 

features of the original image data. Although it shows only one layer for this example, for normal 

RGB image data, the final result is the sum of the convolutional outputs for each of the three RGB 

layers (Saha, 2018). 

 

2-5-2. Max Pooling Layer 

In the max pooling layer, the operation of extracting dominant features is performed on the 

convolved features output from the convolution layer. Similar to the convolution layer, this process 

can reduce the spatial size of the convolved features and thus reduce the load required for data 

processing (Indolia et al., 2018). In the following example, 3 x 3 max pooling is performed on a 5 x 5 

convolved feature. 

 

Figure 5. A Key Concept of the Max Pooling Operations 
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This process returns the maximum value in the 3 x 3 range and repeats the shift in the same way as 

the convolution layer. Another pooling process is the average pooling, which returns the average 

value over the range. 

 

2-5-3. Flatten Layer 

The flatten layer converts the output of the n x m matrix obtained from the pooling layer into a 1 x 

m column vector and outputs it to the next fully connected layer (Saha, 2018). The following is an 

example of flattening a 3 x 3 pooled feature into a 1 x 9 Column Vector. 

 

Figure 6. A Key Concept of the Flattening Operation 

 

2-5-4. Fully Connected Layer 

The fully connected layer accepts all the outputs of the flatten layer as inputs. Each of these inputs is 

connected to the same number of outputs as the recognition categories, and the outputs from these 

outputs are passed to a non-linear function such as the Rectified Linear Unit (ReLU) to return the 

final recognition result. The process of outputting the recognition result by passing through each 

layer of the convolution, pooling, flatten, and fully connected is called the forward propagation. The 

weights used in the fully connected layer and the kernel filters used in the previous layers are 

recalculated and updated successively by the loss function after the output. This process is called the 

back propagation (Yamashita et al., 2018). 

 
Figure 7. Flow Chart for Forward & Back Propagations (Yamashita et al., 2018) 



3. Residual Networks 

3-1. Features That Make ResNet Different from Other CNNs 

For an overview of the technological development in the field of image classification, the evolution 

of the winning model in the ImageNet Large Scale Visual Recognition Competition (ILSVRC), an image 

recognition competition, provides an insight into how CNNs have been developed. Until around 

2010, the mainstream methods were a combination of feature vectors and classifiers such as 

Support Vector Machines (SVMs), but after AlexNet won the ILSVRC in 2012 by a wide margin over 

conventional models, CNNs attracted even more attention. The ResNet used in this project is the 

winning model of the 2015 ILSVRC (Zhai et al, 2020), but it was a major breakthrough in models after 

AlexNet. even in 2022, most new CNN models since then have been based on improvements of this 

ResNet. The revolutionary aspect of ResNet is that it reduces the number of convolution parameters, 

which in turn reduces the depth and ResNet does not simply pass the transformation F(x) by some 

processing block to the next layer, as in normal networks, but shortcuts the input x to that 

processing block and passes H(x)=F(x)+x to the next layer (He et. al, 2015). The processing unit 

including these shortcuts is called the residual module: in ResNet, the gradient is transmitted 

directly to the deeper layers during backpropagation through the shortcuts, enabling efficient 

learning even in very deep networks. 

 

3-2. Analysis and Configurations for Residual Module for ResNet50 

In this project, ResNet50 is used and it consists of a multi-layered structure of blocks called the 

Residual Module. A single Residual Module is made up of Convolution, Batch Normarization and 

Rectified Linear Units (ReLU) layers connected in series, and shortcuts in parallel to them (He et. al, 

2015). ResNet50 is made up of 16 Residual Modules connected in series with other functions, and the 

total number of layers is 177. 



 
Figure 8. Layer Structure of ResNet50 

 

3-2-1. Batch Normarization 

In deep networks, there is a problem that learning does not proceed efficiently due to the internal 

covariate shift, in which updating the parameters of one layer causes the distribution of inputs to 

the next layer to change significantly from batch to batch. Batch normalization (Boxes in gray, Figure 

8) is a method for stabilizing and speeding up learning by normalizing this internal covariate shift and 

allowing each layer to learn as independently as possible (Ioffe et al, 2015). Incorporating it into 

deep networks enables efficient learning of deep networks, and batch normalization has become 

standard in models since ResNet emerged. 

 

3-2-2. Rectified Linear Unit (ReLU) 

Traditionally, 𝑓(𝑥) 	= 	𝑡𝑎𝑛ℎ(𝑥) and 𝑓(𝑥) 	= 	 (1	 +	𝑒!")!# have been used as nonlinear activation 

functions, but learning has been accelerated by using the ReLU (Boxes in orange, Figure 8) defined as 

𝑓(𝑥) 	= 	𝑚𝑎𝑥(0, 𝑥). It speeds up the learning process. This is because it solves the gradient 

vanishing problem that occurs when using conventional activation functions in deep networks.  

 

3-2-3. A Bottleneck Building Block for ResNet50 

ResNet50 and later ResNet versions have achieved a significant improvement in recognition 

accuracy compared to earlier ResNet versions, ResNet34, by incorporating the Bottleneck Building 

Block in its Residual Modules (He et. al, 2015). In ResNet34, the 3 x 3 convolution is performed twice 

in one Residual Module, whereas in ResNet50, a 1 x 1 convolution is used for a dimension reduction, 

followed by a 3 x 3 convolution and then a further 1 x 1 convolution is performed to restore the 
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original dimension (Figure 9), thus allowing deeper models to be built while maintaining the same 

computational complexity as in ResNet34. 

 
Figure 9. ResNet50 Building Block (Right) 

 

4. Implementation 

4-1. Dataset Structure 

Images are obtained from the Mendeley Data providing the PlantVillage dataset. Datasets are 

provided with and without augmentation (J and Gopal, 2019). The dataset with augmentation is 

used for a training process, and the dataset without augmentation is used for a validation process 

after the model is trained. Each dataset has already been classified into 14 crops including 38 crop-

disease pairs (Table 2). 
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Table 2. Classified Crop-Disease Dataset and Number of Images for Each Class 

 

For each class, 1,000 images are randomly chosen from the original dataset with augmentation, then 

the selected images are randomly split in a ratio of 80:20, for the training and for the testing, 

respectively. Therefore, 38,000 images are used for the training process. 

For the validation process, the dataset without augmentation is used. 100 images are randomly 

chosen for each class from the dataset. 

 

4-2. Pre-Data Augmentation 

The PlantVillage dataset is a very high-quality dataset that has been reviewed by plant disease 

experts, but the original dataset is known to have a bias in the number of images by class. For 

example, Orange's Citrus Greening, Soybean Healthy, and Tomato's Yellow Leaf Curl Virus classes, 

have more than 5,000 images each, whereas the Potato Healthy (152 images) and Cedar Apple Rust 

(275 images) classes have relatively a smaller number of images (Table 3).  

 

 

/wo Aug
Original Training Testing Validation

1 AppleBlackRot 1987 800 200 100
2 AppleCedarAppleRust 1760 800 200 100
3 AppleHealthy 2008 800 200 100
4 AppleScab 2016 800 200 100
5 BlueberryHealthy 1816 800 200 100
6 CherryHealthy 1826 800 200 100
7 CherryPowderyMildew 1683 800 200 100
8 CornCercosporaLeafSpotGrayLeafSpot 1642 800 200 100
9 CornCommonRust 1907 800 200 100
10 CornHealthy 1859 800 200 100
11 CornNorthernLeafBlight 1908 800 200 100
12 GrapeBlackRot 1888 800 200 100
13 GrapeEscaBlackMeasles 1920 800 200 100
14 GrapeHealthy 1692 800 200 100
15 GrapeLeafBlightIsariopsisLeafSpot 1722 800 200 100
16 OrangeHaunglongbingCitrusGreening 2010 800 200 100
17 PeachBacterialSpot 1838 800 200 100
18 PeachHealthy 1728 800 200 100
19 PepperBellBacterialSpot 1913 800 200 100
20 PepperBellHealthy 1988 800 200 100
21 PotatoEarlyBlight 1939 800 200 100
22 PotatoHealthy 1824 800 200 100
23 PotatoLateBlight 1939 800 200 100
24 RaspberryHealthy 1781 800 200 100
25 SoybeanHealthy 2022 800 200 100
26 SquashPowderyMildew 1736 800 200 100
27 StrawberryHealthy 1824 800 200 100
28 StrawberryLeafScorch 1774 800 200 100
29 TomatoBacterialSpot 1702 800 200 100
30 TomatoEarlyBlight 1920 800 200 100
31 TomatoHealthy 1926 800 200 100
32 TomatoLateBlight 1851 800 200 100
33 TomatoLeafMold 1882 800 200 100
34 TomatoMosaicVirus 1790 800 200 100
35 TomatoSeptoriaLeafSpot 1745 800 200 100
36 TomatoSpiderMitesTwoSpottedSpiderMite 1741 800 200 100
37 TomatoTargetSpot 1827 800 200 100
38 TomatoYellowLeafCurlVirus 1961 800 200 100

Classes
Number of Images

/w Augmentation



Table 3. Numbers of Images for each class of the PlantVillage Dataset /wo Augmentation 

 

A dataset with widely varying numbers of images depending on classes introduces an unnecessary 

bias in the training model. To prevent this, the number of images in each class needs to be matched 

to the class with the lowest number of images, Potato Healthy (152 images) in this case. However, 

this number of images is not sufficient to improve recognition accuracy. For example, below are the 

results of a training conducted using three different CNN models for 14 classes and 100 images per 

class. For AlexNet and Xception, these show below 90%, and even ResNet50 has shown only 92% 

(Table 4).  

 
Table 4. Training Experiment with 3 CNNs and 100 Images 
 
On the other hand, the results with ResNet50 in 3 different conditions with more than 1,000 images 

for each class, generally achieved around 99+% (Table 5). This indicates that around 1,000 images 

per class are required to train this model. 

 
Table 5. Training Experiment with 3 Conditions and 1,000+ Images in ResNet50  
 
 

CNN Models AlexNet Xception Resnet50
Achieved Accuracy 87.3 % 87.3 % 92.0 %

Epochs done 6 6 6

Train-Testing Ratio 80:20 80:20 80:20

Num of Classes 14 14 14

Num of Images per Class 100 100 100

ResNet50 Condition 1 Condition 2 Condition 3
Accuracy 98.25 % 99.27 % 99.30 %

Epochs done 6 6 6

Train-Eva Ratio 80:20 80:20 80:20

Num of Classes 2 10 10

Num of Images per Class 1,000 2,127 1,000

Label Count Label Count
1 AppleScab 630 20 PepperBellHealthy 1478
2 AppleBlackRot 621 21 PotatoEarlyBlight 1000
3 AppleCedarAppleRust 275 22 PotatoLateBlight 1000
4 AppleHealthy 1645 23 PotatoHealthy 152
5 BlueberryHealthy 1502 24 RaspberryHealthy 371
6 CherryPowderyMildew 1052 25 SoybeanHealthy 5090
7 CherryHealthy 854 26 SquashPowderyMildew 1835
8 CornCercosporaLeafSpotGrayLeafSpot 513 27 StrawberryLeafScorch 1109
9 CornCommonRust 1192 28 StrawberryHealthy 456
10 CornNorthernLeafBlight 985 29 TomatoBacterialSpot 2127
11 CornHealthy 1162 30 TomatoEarlyBlight 1000
12 GrapeBlackRot 1180 31 TomatoLateBlight 1909
13 GrapeEscaBlackMeasles 1383 32 TomatoLeafMold 952
14 GrapeLeafBlightIsariopsisLeafSpot 1076 33 TomatoSeptoriaLeafSpot 1771
15 GrapeHealthy 423 34 TomatoSpiderMitesTwoSpottedSpiderMite 1676
16 OrangeHaunglongbingCitrusGreening 5507 35 TomatoTargetSpot 1404
17 PeachBacterialSpot 2297 36 TomatoYellowLeafCurlVirus 5357
18 PeachHealthy 360 37 TomatoMosaicVirus 373
19 PepperBellBacterialSpot 997 38 TomatoHealthy 1591

Dataset without Augmentation



The project uses an augmented data set pre-processed by Arun Pandian J and Geetharamani Gopal 

(J and Gopal, 2019). As mentioned in the previous section, there are various methods of data 

augmentation. The dataset provided by Mendeley Data is bulked up to four times the number of 

images by rotation, which is one of the most common augmentation methods. Below is one of the 

original images (Top-Left, Figure 9) of the Apple Black Rot class and three images that have been 

augmented from it. Three angles of rotation are used: 30˚ (Top-Right, Figure 9), 90˚ (Bottom-Right, 

Figure 9) and 270˚ (Bottom-Left, Figure 9). 

 
Figure 9. An Image Rotation for Image of the Apple Rot Class 
 
4-3. Data Augmentation in MATLAB 

The dataset is fed by MATLAB script, then augmented again by some MATLAB functions before the 

training starts. Here, 3 common augmentation methods are used, Random Reflection, Random 

Translation, and Random Scaling. Here are some details of the augmentation options applied to the 

dataset. 

 

- 4-3-1. RandXReflection 

When the RandXReflection option is set as true in the imageDataAugmenter function, each image in 

the dataset has a 50% chance of being flipped horizontally (MathWorks a- ImageDataAugmenter, 

2022). 

 
 



- 4-3-2. RandXTranslation / RandYTranslation 

Specifying these options followed by a two-element numeric vector in pixels randomly shift the 

image horizontally or vertically within that pixel range (MathWorks a - ImageDataAugmenter, 2022). 

 

- 4-3-3. RandXScale / RandYScale 

Specifying these options followed by a two-element numeric vector in ratios randomly stretch the 

image horizontally or vertically within that ratio (MathWorks a - ImageDataAugmenter, 2022). 

 
In the MATLAB script, RandXReflection is set as true, the pixel range is set as [-30, 30] for 

RandXTranslation and RandYTranslation, and the scale range is set as [0.9, 1.1] for RandXScale and 

RandYScale, as the source code shows below. 

 
Figure 10. A Part of the MATLAB Script for the Image Augmentation (MathWorks b - Train Deep Learning 
Network to Classify New Images, 2022) - Appendix01_TrainingProcedures.html  
 
The input size of the image is also changed here to the size required by the CNN used (224 x 224 for 

ResNet50). These Augmentation options are then applied to the training dataset, but not to the 

Validation dataset. 

 

4-4. Training Options/Configurations 

The MATLAB script specifies various training options. Here are the most significant options for the 

training, which have been applied to the final trained model. 

 

- 4-4-1. Optimizers for Training Network 

There are 3 optimizers are available as the leaning solver, Stochastic Gradient Method with 

Momentum (SGDM), Root Mean Squared Propagation (RMSProp) and Adaptive Moment Estimation 

(Adam) (MathWorks - trainingOptions c, 2022). One of those can be selected. The Stochastic 



Gradient Method with Momentum (SGDM) is used to train this model. The SGDM generates a 

momentum term by using weights that decays exponentially with respect to the iteration time (Liu 

and Luo, 2020).  

 

- 4-4-2. Minimum Batch Size 

This can be specified as MiniBatchSize in the trainingOptions. MiniBatchSize can be used to evaluate 

the gradient of the loss function and to update the weights for the next iteration. Although 128 is 

supposed to use as a default value, 10 is used for this model. A study by Masters and Luschi indicates 

that a smaller MiniBatchSize makes a newer gradient computation that gives a training more stable 

convergence, whereas a larger MiniBatchSize reduces a range of the learning rate, which can bring 

the training less reliable testing ability and convergence (Masters and Luschi, 2018). 

 

- 4-4-3. Maximum Epochs 

Epoch is the number of times that the training cycles through the entire data set, and MaxEpochs 

specifies this number of cycles. There is no generally recommended number, but the process needs 

to be repeated until Loss and Accuracy have converged sufficiently that no further change is 

expected (MathWorks - trainingOptions c, 2022). For this model, 6 is used. 

 

- 4-4-4. Initial Learning Rate 

The value of the InitialLearnRate affects the balance between the time required for training and the 

optimisation of the training results; the default value for SGDM Optimizer is 0.01, but 0.0003 is used 

in this model. If the Leaning Rate is too small, learning takes longer, and if it is too large, the learning 

results may be suboptimal or diverge without convergence (MathWorks c - trainingOptions, 2022). 

 

- 4-4-5. Shuffle 

Choose whether to shuffle the training and test datasets before each epoch runs: once, never or 

every-epoch, with once shuffling only once before the training starts. never performs no shuffling, 

and every-epoch performs shuffling on the training and test data sets before each epoch is run. 

Depending on the number of images in the dataset and the value of MiniBatchSize, excess data may 

be discarded at the end of each epoch, and shuffling the dataset prevents the same data being 

discarded every epoch. In this model, every-epoch is used (MathWorks c - trainingOptions, 2022). 

 

 

 



- 4-4-6. Validation Data and Frequency 

The ValidationData option specifies the dataset used for validation during training. Also, the number 

of iterations at each epoch can be specified with the ValidationFrequency option (MathWorks c - 

trainingOptions, 2022). Here, the number of images present in the training dataset 30,400 is divided 

by the MiniBatchSize value 10 to ensure that there is no surplus data to be discarded at the end of 

each epoch. 3,040 are used in this model, so the overall number of iterations done during the 

training is 18,240 (3,040 iterations x 6 epochs). 

 

Figure 11. A Part of the MATLAB Script for the training options (MathWorks b- Train Deep Learning Network 
to Classify New Images, 2022) - Appendix01_TrainingProcedures.html  
 

Optionally, the training process and progress can be monitored by specifying the Plots and training-

progress options in the trainingOptions function as Figure 11 shows above. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5. Results 

5-1. 1st Experiment: 15 Classes - 100 Images Per Class 

The 1st experiment is performed for 15 classes and 100 images per class to figure out a practical 

number of images per class. The accuracy of 92.0% is achieved with this experiment (Figure 12). 

 
Figure 12. Training Progress Monitor and the Final Result for 1st Experiment 

 

However, the accuracy for 2 classes, Tomato Early Blight and Tomato Late Blight show a quite low 

True Positive value, 55% for the Early Blight, and 65% for the Late Blight. As the confusion matrix 

shows below, it indicates that Tomato Early Blight has a 55% True Positive of being recognized as it is 

but has a 25% False Positive (being misrecognized) as Tomato Septoria Leaf Spot and a 15% False 

Positive as Tomato Target Spot. Tomato Late Blight is also correctly recognized with a True Positive 

of 65%, while it is misrecognized as Potato Late Blight with a probability of 15%. 

 
Table 4. Confusion Matrix for the 1st Experiment with 15 Classes and 100 images per Class 

Label Names Pepper__bell___Bacterial_spotPepper__bell___healthyPotato___Early_blightPotato___Late_blightPotato___healthyTomato_Bacterial_spotTomato_Early_blightTomato_Late_blightTomato_Leaf_MoldTomato_Septoria_leaf_spotTomato_Spider_mites_Two_spotted_spider_miteTomato__Target_SpotTomato__Tomato_YellowLeaf__Curl_VirusTomato__Tomato_mosaic_virusTomato_healthy
Pepper__bell___Bacterial_spot 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Pepper__bell___healthy 0 0.95 0 0 0.05 0 0 0 0 0 0 0 0 0 0
Potato___Early_blight 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
Potato___Late_blight 0 0 0.05 0.95 0 0 0 0 0 0 0 0 0 0 0
Potato___healthy 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
Tomato_Bacterial_spot 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
Tomato_Early_blight 0 0 0 0 0 0.05 0.55 0 0 0.25 0 0.15 0 0 0
Tomato_Late_blight 0 0 0 0.15 0 0 0.05 0.65 0.05 0.05 0 0.05 0 0 0
Tomato_Leaf_Mold 0 0 0 0 0 0 0 0 0.9 0.05 0 0 0 0.05 0
Tomato_Septoria_leaf_spot 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
Tomato_Spider_mites_Two_spotted_spider_mite 0 0 0 0 0 0 0 0 0.05 0 0.9 0.05 0 0 0
Tomato__Target_Spot 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
Tomato__Tomato_YellowLeaf__Curl_Virus 0 0 0 0 0 0.05 0 0 0 0 0.05 0 0.9 0 0
Tomato__Tomato_mosaic_virus 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
Tomato_healthy 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



5-2. 2nd Experiment: 10 Tomato Classes - 2,127 Images Per Class 

In the second experiment, the training only focuses on the 10 tomato classes, using 2,127 images 

per class, because in the previous experiment the misrecognition is concentrated on two classes of 

Tomato. The experiment achieved a high recognition rate overall as the confusion matrix shows 

below (Table 5), with an overall recognition rate of 99.27% (Figure 13). 

Table 5. Confusion Matrix for 2nd Training with 10 Tomato classes 

 
Figure 13. Training Progress Monitor and the Final Result for 2nd Experiment 

 

5-3. 3rd Experiment: 38 Classes - 1,000 Images Per Class 

As the results of the previous two experiments indicates that a number of 1,000 or more images per 

class is quite effective in improving the recognition rate of several classes that are likely to be 

misrecognized, training is carried out with the number of images per class set at 1,000 for all 38 

Tomato_Bacterial_spotTomato_Early_blightTomato_Late_blightTomato_Leaf_MoldTomato_Septoria_leaf_spotTomato_Spider_mites_Two_spotted_spider_miteTomato__Target_SpotTomato__Tomato_YellowLeaf__Curl_VirusTomato__Tomato_mosaic_virusTomato_healthy

Tomato_Bacterial_spot 1 0 0 0 0 0 0 0 0 0
Tomato_Early_blight 0 0.975 0 0.01 0 0 0.005 0.01 0 0
Tomato_Late_blight 0 0 1 0 0 0 0 0 0 0
Tomato_Leaf_Mold 0 0 0 0.99 0 0 0.01 0 0 0
Tomato_Septoria_leaf_spot 0 0 0 0 0.99 0 0.01 0 0 0
Tomato_Spider_mites_Two_spotted_spider_mite 0 0 0 0 0 1 0 0 0 0
Tomato__Target_Spot 0 0 0 0 0 0 1 0 0 0
Tomato__Tomato_YellowLeaf__Curl_Virus 0 0 0.005 0 0 0 0 0.995 0 0
Tomato__Tomato_mosaic_virus 0 0 0 0 0 0.015 0 0 0.985 0
Tomato_healthy 0 0 0 0 0 0 0 0 0.005 0.995



classes as a final experiment. An overall accuracy is 99.5% (Figure 14) and a 100% accuracy is 

achieved for 22 classes out of 38 classes (Table 6). 

 
Table 6. Confusion Matrix for 38 Classes and 1,000 Images per Class (See Appendix_03.xlsx: confMat_Percentages) 

 

 
Figure 14. Training Progress Monitor and the Final Result (See Appendix_03.xlsx: MATLAB_TrainProgressResult) 

 

 

 

AppleBlackRotAppleCedarAppleRustAppleHealthyAppleScab BlueberryHealthyCherryHealthyCherryPowderyMildewCornCercosporaLeafSpotGrayLeafSpotCornCommonRustCornHealthy CornNorthernLeafBlightGrapeBlackRotGrapeEscaBlackMeaslesGrapeHealthyGrapeLeafBlightIsariopsisLeafSpotOrangeHaunglongbingCitrusGreeningPeachBacterialSpotPeachHealthyPepperBellBacterialSpot

AppleBlackRot 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

AppleCedarAppleRust 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

AppleHealthy 0 0 0.98 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.015 0

AppleScab 0 0 0 0.995 0 0 0 0 0 0 0 0 0 0 0 0 0.005 0 0

BlueberryHealthy 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CherryHealthy 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

CherryPowderyMildew 0 0 0 0 0 0 0.99 0 0 0 0 0 0 0 0 0 0 0.01 0

CornCercosporaLeafSpotGrayLeafSpot 0 0 0 0 0 0 0 0.98 0 0 0.02 0 0 0 0 0 0 0 0

CornCommonRust 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

CornHealthy 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

CornNorthernLeafBlight 0 0 0 0 0 0 0 0.02 0 0 0.98 0 0 0 0 0 0 0 0

GrapeBlackRot 0 0 0 0 0 0 0 0 0 0 0 0.995 0.005 0 0 0 0 0 0

GrapeEscaBlackMeasles 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

GrapeHealthy 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

GrapeLeafBlightIsariopsisLeafSpot 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

OrangeHaunglongbingCitrusGreening 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

PeachBacterialSpot 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

PeachHealthy 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

PepperBellBacterialSpot 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
PepperBellHealthyPotatoEarlyBlightPotatoHealthyPotatoLateBlightRaspberryHealthySoybeanHealthySquashPowderyMildewStrawberryHealthyStrawberryLeafScorchTomatoBacterialSpotTomatoEarlyBlightTomatoHealthyTomatoLateBlightTomatoLeafMoldTomatoMosaicVirusTomatoSeptoriaLeafSpotTomatoSpiderMitesTwoSpottedSpiderMiteTomatoTargetSpotTomatoYellowLeafCurlVirus

PepperBellHealthy 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PotatoEarlyBlight 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PotatoHealthy 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PotatoLateBlight 0 0 0 0.995 0 0 0 0 0 0 0 0 0.005 0 0 0 0 0 0

RaspberryHealthy 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SoybeanHealthy 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

SquashPowderyMildew 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

StrawberryHealthy 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

StrawberryLeafScorch 0 0 0 0 0 0 0 0 0.995 0 0 0 0 0 0 0 0 0 0

TomatoBacterialSpot 0 0 0 0 0 0 0 0 0 0.995 0 0 0 0 0 0 0.005 0 0

TomatoEarlyBlight 0 0 0 0 0 0 0 0 0 0.005 0.99 0 0.005 0 0 0 0 0 0

TomatoHealthy 0 0 0 0 0 0 0 0 0 0 0 0.995 0 0 0 0 0 0 0

TomatoLateBlight 0 0 0 0 0 0 0 0 0 0 0.005 0 0.995 0 0 0 0 0 0

TomatoLeafMold 0 0 0 0 0 0 0 0 0 0 0 0 0 0.99 0 0.005 0.005 0 0

TomatoMosaicVirus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.995 0 0 0.005 0

TomatoSeptoriaLeafSpot 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

TomatoSpiderMitesTwoSpottedSpiderMite 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
TomatoTargetSpot 0 0 0 0 0 0 0 0 0 0 0.005 0.005 0 0 0 0 0.035 0.955 0
TomatoYellowLeafCurlVirus 0 0 0 0 0 0 0 0 0 0.015 0 0 0 0 0 0 0 0 0.985



6. Discussions 

6-1. Trained Model Implementation on a Mobile Phone 

The trained model with a 99.5% accuracy has been implemented on iPhone 7 Plus. MATLAB exports 

a trained model as a single file (278 MB) to be utilized on another devices. Also, the MATLAB Mobile 

needs to be installed on a mobile phone. The exported trained model can be shared with the 

MATLAB Mobile on a mobile phone via a cloud storage, called MATLAB Drive. Although the trained 

model almost perfectly recognizes plant leaf images and their diseases on a computer screen by 

capturing them via a mobile phone's built-in camera, if there is a background or a reflection of the 

screen appeared in the captured image, the recognition accuracy would be getting lower. For a 

further study, it is necessary to develop a method for verifying accurate recognition rates using a 

mobile phone's camera and conduct experiments based on that method. 

 

6-2. Accuracy Validation of the Trained Model on an Unknown Dataset 

As mentioned in the previous section, the PlantVillage dataset is a high-quality dataset thoroughly 

reviewed by plant disease experts. However, all the images in the PlantVillage dataset show only one 

target leaf on a background of the same color tone. Therefore, models trained on such datasets with 

highly homogeneous images often show poor recognition rates for exceptional images - for example, 

images with other leaves in the background, or images where the area of the leaf is extremely small 

or too large for the area of the image. For example, 12 images are randomly selected from the 

PlantVillage dataset (Figure 15) and the PlantDoc dataset (Singh et al., 2020) (Figure 16). Both groups 

belong to the Corn Northern Leaf Blight class. 

  

 

 

 

 

 

 
 

Figure 15. PlantVillage dataset       Figure 16. PlantDoc dataset 

 
The PlantDoc dataset uses a variety of images, including images with deliberately different aspect 

ratios and images with other leaves, whereas the PlantVillage dataset is uniform, down to the colour 

of the background and the ratio of leaf area to image area. The following are the results of 

experiments with models trained on the PlantVillage dataset, with the PlantDoc dataset as the 



validation image. The experiments are limited to the nine classes present in both PlantVillage and 

PlantDoc datasets, resulting in a recognition accuracy of only 83.7%. Here, the CornHealthy class is 

perfectly recognized as it is, but Potato and Tomato classes show a relatively low True Positive score. 

 
Table 7. Extra Experiment: Validating the PlantDoc dataset with the PlantVillage dataset. 

 

Thus, a considerable loss of recognition accuracy occurs when the quality of the dataset used for 

training differs significantly from that of the dataset used for validation. Future research is expected 

to include training on datasets with mixed data of different quality and the development of methods 

for verifying biases caused by this. 

 

7. Conclusion 

In this study, a MATLAB platform is used to develop an image recognition training model using the 

PlantVillage dataset. The final recognition accuracy of the model achieves 99.5% for 38 Plant-Disease 

pairs. The convolutional neural network used is ResNet50, which is the dominant base model in 

recent years, and the shortcut structure of ResNet50 is shown to play an important role in improving 

the trade-off between recognition accuracy and the number of parameters. The model has been 

implemented on a Mobile Phone and appears to show high recognition accuracy, but a specific 

validation method needs to be developed for the mobile phone's camera, in the future. On the other 

hand, due to the homogeneity of the PlantVillage dataset used for training, it shows low recognition 

accuracy for datasets consisting of a variety of miscellaneous data, and future work on mixed 

dataset methods and other data augmentation techniques is expected to improve this issue. 

A Total Word Count: 5,211 

 

 

 

 

Labels True Positive

CornCercosporaLeafSpotGrayLeafSpot                 88.66%

CornCommonRust                    92.50%

CornHealthy                       100.00%

CornNorthernLeafBlight            85.86%

PotatoHealthy                     59.78%

PotatoLateBlight                  56.72%

TomatoHealthy                     52.44%

TomatoMosaicVirus                 57.27%

TomatoYellowLeafCurlVirus 71.17%
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